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2. Why Parallelize - Benchmarking HEC-RAS Core Scaling

 HEC-RAS 2D CPU Core Scaling
e Platform Comparisons: Cloud, Laptop, Workstation and HPC
* Parallelization in Practice

3. Best Practices for Al-Assisted Python Scripting HEc.'_c:omma_nder
e Code-Forward Approach repostiony (GIEHLE)
* Notebook-style, Code Cell Level Modularity
* Al Automated Environment and Dependency Setup

* Al is Lowering Barriers to Adoption
4. Al-Assisted Coding: Lowering Barrier to Entry for Modeling Workflows
5. Prompting Examples and Strategies
6. Case Study: West Fork Calcasieu Model for Louisiana Watershed Initiative



Al-Coded Jupyter Notebook Supporting:

* Parallel HEC-RAS Execution RAS'COm mMa nder el
* Windows Native: Supports All Versions Para”eliZing HEC‘RAS ﬁ <

* Leverage Multiple Workstations in Parallel

* Open Source, MIT License ln a Jupyter NOtEbOOk RS#
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e Batch File Creation
i Command Line Execution  Run Missing elect Operstion Hede & Build from DSS
e Results Collection

In Build From D88 Mode, the HECRAS Project Folder will be overwritten

HECRAS Project Folder:  |CivYour HECRAS_Project Folder

Flexible Operation:
(] B ri n g YO u r OW n P rOj e Ct ; Eggz:;;:}&;:r Rl:;:’;ur_HECHMS_Output_DSS_FuIder_ur_RAS_1D_Output_FuIder

* Create Plans from HMS DSS Input Files e
* Optional 2D Infiltration Overrides

HECRAS Template Falder:  |CAYour HECRAS Ternplate_Faolder

Infiltration Frarm RASMapper CSW:  c\Path_To_¥ouriExample_Infiltration_From_RASKMapper.csv

User Calibration Runs CEW Fullpath: | c\Path_To_Your\Example_User_Run_Parameters.csv

In Build From DS8S Mode, the HECRAS Project Folder will be overwritten

RAS-Commander is ready for Al-Assisted editing to
support your bespoke applications.

Run HEC-RAS

xit
In Parallel




HMS-Commander

Al-Coded Jupyter Notebook Supporting
* Subbasin Parameter Editing

e DSS Output File Renaming

* Impervious Grid Scaling > 1.0

* Calibration Regions by shapefile

e CSV File Input

* Enables Linked HMS>RAS Calibration Workflows
 Modular Script Ready for Al-Editing for Bespoke Applications

Example CSV Input used for HMS-Commander and RAS-Commander 2D Infiltration Overrides:

user_run_ - : : : : : L threshold_ time_of_ storage_
initial_ maximum_ percolation impervious_ recession_ initial_flow_ . .
number_ - . ) flow_to_ concentration coefficient_
deficit_scale deficit_scale rate_scale area_scale factor area_ratio )
from_csv peak_ratio _scale scale
1 1.0 1 0.06 1 0.1 1 0.1 1 1

2 0.9 1 0.06 1 0.1 1 0.1 1 1



Where’s the Al?

A few clarifications on how we are using Al:
* Al is not operating the model

* Al isn’t making decisions or optimizing anything directly

Here is the secret sauce:

1. Al was used to write python code into notebooks, starting from plain language descriptions.

2. Al was also used to explain code segments it had written, to better teach me how to direct it with
English commands to create the desired code output and functionality

3. Assomeone with very little prior python experience, | was able to generate useful code and
innovative workflows that immediately unlocked innovations that were previously unreachable.

The most powerful capability of Large Language Model is the ability to speak
multiple languages fluently. Especially deterministic languages like code.



Why Parallelize:

The Bitter Lesson by Richard Sutton emphasized:

’ Avoiding The Bitter
e 2 -eoW. Lesson in HEC-RAS
o Z TR g — Modeling

Breakthrough progress eventually arrives by an opposing approach based on scaling computation by search and learning

By enabling parallel operation in support of wide parameter search operations, RAS-
Commander represents an opposing aﬁproach_for calibration workflows, based on efficiently
scaling computation by search rather than relying on heuristic methods.

Benchmarking HEC-RAS Core Scaling

Cloud Systems Midrange Laptops

Midrange Workstations Local HPC Systems

Benchmarking was collected for all major CPUpratforms (circa 2023) to explore core
scaling behavior and identify chipsets and platforms offering best overall performance



2D HEC-RAS Performance Scaling

Fenstermaker Local Compute Cluster: Benchmarking Insights

FM Compute Cluster

Unit Runtime vs Cores CPU Efficiency vs Cores
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Midrange Desktop
vs Public Cloud

* Midrange desktops (i9)
outperform typical public
cloud platforms on Windows

* Massively inefficient core
scaling on the cloud

* Optimizing efficiency can help
manage cloud costs

Costs are still higher in the cloud
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Comparison: Local Compute vs Best Public Cloud

Unit Runtime vs Cores CPU Efficiency vs Cores
—e— Alder Lake Windows Workstation —e— Alder Lake Windows Workstation
1.4+ —e— AWS C6i Linux Solver —e— AWS C6i Linux Solver
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Cloud-scale architectures do successfully scale beyond 8 cores, but have similar efficiency characteristics

Cloud instances are relatively cheap, but utilizing it effectively is needlessly complex. Local



Optimize CPU Settings

Disable Hyperthreading Disable “Efficiency” cores Install Intel XTU Tuning
Unit Runtime vs Cores CPU Efficiency vs Cores
—eo— Alder Lake Windows Workstation —o— Alder Lake Windows Workstation
1.4+ —e— Alder Lake Windows Workstation Optimized —e— Alder Lake Windows Workstation Optimized
—e— AWS C6i Linux Solver 2571 —e— AWS C6i Linux Solver
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Composite Benchmarking Results

Machine Performance by Core Count

Machine Name
AWS c5a.8xlarge (AMD EPYC 7R32) (Linux Solver)
AWS c6i.24xlarge (Intel Ice Lake Xeon Platinum 8375C) (Linux Solver)
AWS cé6i.8xlarge (Intel Ice Lake Xeon Platinum 8375C) (Linux Solver)
AWS c6i.8xlarge (Intel Ice Lake Xeon Platinum 8375C) (Windows Instance)
Dell Precision 7920 Tower (Intel Xeon Gold 6246R CPU, 3.40 GHz, 192 GB Ram)
Dell Rack Machine (AMD 16 core x 2, 3.49GHz, 64GB RAM)
Dell Rack Machine (Hyper V AMD, 10 vCPU, 3.49GHz, 16GB RAM, 128 GB drive)
Fenstermaker HPC (12th Gen i9-12900K 64 GB) (Cloud Test Environment)
Fenstermaker HPC (12th Gen i9-12900K 64 GB) (Hardware Defaults)
Fenstermaker HPC (12th Gen i9-12900K 64 GB) (Optimized, No HT, No Eff Cores)
Intel Xeon Gold 6248R (32 GB RAM) (Cloud Test Environment)
Microsoft Azure F72s (Intel Xeon Platinum 8370C CPU 144GB RAM)
Microsoft Azure FSV2 Baremetal Instance, Xeon Platinum 8270C, 128 GB
Microsoft Azure FSV2, Xeon Platinum 8272CL
Microsoft Azure FX12mds (Intel Xeon Gold 6246R CPU, 252 GB RAM)
Microsoft Azure VM, AMD EPYC 7V12
Midrange Desktop (Intel i9-9900) (No HT)
Midrange Desktop (Intel i9-9900) - 64GB RAM, Mapped Drive
Midrange Desktop i19-9900 (with HT)
Midrange Laptop (Intel Core i7-1070H, 32GB)
OpenMetal Private Cloud (2 x Intel Xeon Gold 6338 CPU, 32-Core/64-Thread)
Servers.com (Intel Xeon E-2288G CPU, 128 GB RAM)
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All Results are Recorded on the HEC-Commander GitHub Repo Source Blog Post:

i Benchmarking is All You Need
 Benchmarking results as CSV
 Markdown files containing datasets and plots
* |Includes Al-generated python code

Drag-Drop this file into your favorite LLM, tell it your CPU and ask it for upgrade options




Parallelization In Practice
G|V|ng 70% tO Galn 70% Unit Runtime vs Cores

(Alder Lake Windows Workstation Optimized)

For an assumed 1 day runtime at 1 core Lor B i e it i
2 Cores = 0.55 days 0.9}
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g 0.7F
Without parallelization, running at 2 cores E
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0.5
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With parallelization, batched runs sets are 72% faster w/same CPU by maximizing efficiency



But How Do We Parallelize

HECRASController Market Solutions

* Lack of Documentation  All Built on Linux/Cloud

* Limited to COM32 Interface * No access to latest versions
* No RASMapper Automation * Proprietary

* No Parallel Execution * Not Free

 Data Transfer Bottlenecks

A Better Solution was Needed
So | coded it myself with Al




Case Study: West Fork Calcasieu Model

Louisiana Watershed Initiative

Al Authored Scripts gave us an over 10x boost in effective throughput:
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A focus on hardware selection and effective utilization of idle compute
capacity for low-cost horizontal scaling yielded very good results throughout

Region 4’s efforts
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10x Engineering:
By The Numbers



Case Study: West Fork Calcasieu Model Sy \ATERSHED

Region 4, Louisiana Watershed Initiative

Leveraging and order of magnitude more compute and data allowed innovative calibration
and validation approaches with more deterministic results.

1l or Sensitivty USGS 08014500 RAS River Station 110449 - STAGE

I or Sensitivty USGS 08014881 RAS River Station 117188 - STAGE

Revisiting The Bitter Lesson:

“Breakthrough progress eventually
arrives by an opposing approach based
on scaling computation by search and
leaming”

R.H. Sutton

The future is parallelization! You can
implement your own innovative tools
today with lower barriers to entry than
ever before by leveraging LLM's.




From

Stacking Gains

Avoiding Public Cloud: 35% to 240% gains

* Depending on instance, provider
* Linux instances consistently performed ~15% faster than Windows

Maximizing Single Core Performance for Model Development

* Disabling Hyperthreading: +10% 1G0T 90 CORES ANDAVEPUAIN B/og P(:St: :
* Disabling Efficiency Cores: Avoiding 5-25% Performance Penalty F;or:rhIOI)\;to g.zsx
y the Numbpers

Maximizing Efficiency w/Batched Calibration/Validation, Parallelization

 Compute batches 70% faster on single machine
* Additional Linear Scaling through Remote Execution (+100% Per Machine)

* Roughness: ~50 runs, HMS Sensitivity/Calibration 96 Runs per set
* Tested with 12 total compute nodes, 48 parallel runs

We will come back to this again in the Case Study at the end of the presentation.



Back to Al:
What does the Future Look Like?

* Innovative new tools developed even closer to the technical experts

* Drastically lowered barriers to writing and executing code
* More automated data analysis methods

* Less technical drudgery

* More focus on higher-level planning and thinking

* Ability to quickly innovate around commercial software limitations



Al-Assisted Python Scripting:

3 Basic Levels of Al Interaction with Python Code:

Plain Language Only; Agentic
(Code Interpreter on ChatGPT Website)

|

Plain Language Only; Non-Agentic
(ChatGPT -> VS Code)

|

Manual Coding with Local Al-Enabled IDE
(Cursor)

Each level of interaction drastically shortens the learning curve into the next.

ChatGPT’s Code Interpreter is a wrapper for a Jupyter server with a sandboxed Python
Environment. This generates a plethora of training data, making Python the most efficient
language that GPT is most proficient at utilizing. By observing the python code generated
in code interpreter, the user becomes familiar with the libraries and methods utilized by
code interpreter, and becomes better able to direct the Al to create the desired output.



Al-Assisted Python Scripting:

Lowering Barriers to Increase Adoption

Al can assist beginner users with:

- Utilizing code autonomously with Code Interpreter

Explaining Code Segments
Step by step instructions on Development Environment Setup
Assembling bespoke workflows from natural language

Utilizing a vast array of open source python packages

This drastically lowers barriers to adoption and utilization python code,
and opens a new frontier of development of innovative software tools.



Prompting Examples and Strategies

Let’s explore what you can do at * Intelligent Voice Notes and Dictations
the first level of interaction:  Office Application Assistant
“Help me with VBA Scripting in Excel”
You are Here * Expert Software Assistants
Plain Language Only; Agentic “Write a QGIS script to do this”
Code Int e ChatGPT Websit . .
st SRR ehsite) * Powerful Agentic Calculations
l “Fit a log-normal distribution to the data and

calculate return periods”

Plain Language Only; Non-Agentic
(ChatGPT -> VS Code)

Code Interpreter can handle:
l * Basic GIS Operations
Manual Coding with Local Al-Enabled IDE Sort/Filter/Display Datasets.
(Cursor) * Create Charts and Graphs

* Assemble simple code operations to solve
problems Excel can’t solve.

Input/Output files up to ~1GB




Prompt Improvement Pipeline

As tasks are repeated, a prompt
improvement pipeline approach can be
adopted

Each task is an opportunity to improve the
prompt and add or remove parameters.

Automating small tasks, then larger tasks,
and eventually outgrowing the capabilities
of the web interface is the point.

@lizing and Structuring Prompt

@ng Knowledge Base and App@

l

Process Diagram Source




“Prompt Engineering”

The most impactful tips and tricks for improving
your prompts generally revolve around providing
the Al custom instructions and context:

When prompting an LLM, focus on:

* Providing clear, well-structured directions
* Use Delineators to Separate Instructions from Context

* Understand the Limitations:
* Limited Context Windows
* Limited Retrieval from Large Documents
* Probabilistic Operation, not Deterministic
* File size and library limitations in Code Interpreter
 No internet access (blame the Al safety patrol)

Be ready to Iterate, Iterate, Iterate!

Basic “prompt engineering” is typically:

Role (Persona)
Constraints
Contextual Data
Instructions
Desired Output
Examples

Prompts can also be structured as code

Your Al Assistant doesn't know what it's doing here, unless you tell it



Al-Assisted Python Scripting:
Notebook Based, Code-Forward Approach

GPT can just as easily write a script for you to execute locally. Since the
packend for Code interpreter is a Jupyter Notebook, the format suddenly
pecame very useful for small to medium complexity scripts due to the ability to

nave robust Al assistance.

By starting with small, useful operations that execute flawlessly within the code

interpreter environment, non-coding users can begin chaining simple
functionalities together within a local notebook, then iterating with GPT to

achieve their workflow automation.



Al-Assisted Python Scripting:
Context Window Driven Modularity

Context window driven modularity emerges, as code cells are naturally limited to the size of the context
window before manual curation of context is required for each code request. Ideally, code cells should be
around % the size of a typical LLM context window. For ChatGPT, this is somewhere around 30-62k tokens
currently (depending on subscription level).

Hiding code away in libraries is ideal for software development but introduces friction for beginner users,
as this context must be manually included to create coherent code. Code can then be later combined and
refactored for efficiency, standardization or to prepare it to be modularized further into a library or class.

File Size Distribution for Major Datasets vs LLM Context Windows

For non-coders who are relying on LLM'’s to do the
heavy lifting of their coding effort, including all
custom code within the notebook where possible is
ideal.

Open-source libraries should already be in the LLM'’s
training, which maximizes coverage and prevents
hallucinations.




Al-Assisted Python Scripting:
Automated Python Environment Setup

Python environment setup is the #1 friction point in trying to create portable scripts

Utilizing Jupyter’s ability to run commands in the terminal, we can detect missing
packages and install them using any combination of package managers (pip, conda,
git). This is ideal when building for a single platform (typically Windows).

The user provides import statements, and the GPT provides:

- Import detection
- Automatic package installation
- User can specify conda, pip, or special instructions

Jupyter Notebook Portability
Output: Enhancer GPT (ChatGPT)

Complete, ready-to-run code cell to automate environment setup



Have Reasonable Expectations

Text Evaluation

Success Probability Heatmap
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At even a 88% accuracy rate, chained operations will still exhibit high probability of errors and hallucinations.
The “regenerate” button is still your friend! Iterating is an integral part of using LLM’s.



But Walit

There’s More
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HEC-Commander Repository

Open Source Notebooks:

SCRIPT TRANSLATER
OUTLINE IN PLAIN LANGUAGE Learning Assistant

ated to LWI Region 4 E

Stations within 100 miles of Watershed Boundary GHNCD Stations vs AORC Gridded Precipitation
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