Leveraging Al-Assisted Scripting For HEC-RAS and HEC-HMS Automation An Exploration of the Development of HEC-Commander Tools Senior Water Resources Technical Lead C.H. Fenstermaker and Associates, LLC HEC - COMMANDER ASFPM 2024 Conference Thursday June 27, 2:00PM Concurrent Session G9 10:30AM – 12:00PM ## Outline - 1. HEC-Commander Tools Intro \rightarrow Where's the AI? - 2. Why Parallelize → Benchmarking HEC-RAS Core Scaling - HEC-RAS 2D CPU Core Scaling - Platform Comparisons: Cloud, Laptop, Workstation and HPC - Parallelization in Practice - 3. Best Practices for Al-Assisted Python Scripting - Code-Forward Approach - Notebook-style, Code Cell Level Modularity - Al Automated Environment and Dependency Setup - Al is Lowering Barriers to Adoption - 4. Al-Assisted Coding: Lowering Barrier to Entry for Modeling Workflows - 5. Prompting Examples and Strategies - 6. Case Study: West Fork Calcasieu Model for Louisiana Watershed Initiative William Katzenmeyei Linkedin HEC-Commander Repository (GitHub) #### **AI-Coded Jupyter Notebook Supporting:** - Parallel HEC-RAS Execution - Windows Native: Supports All Versions - Leverage Multiple Workstations in Parallel - Open Source, MIT License #### **Basic Components** - User Input and Settings - New! Tkinter GUI - File Deploy and Copy - Batch File Creation - Command Line Execution - Results Collection #### **Flexible Operation:** - Bring Your Own Project - Create Plans from HMS DSS Input Files - Optional 2D Infiltration Overrides RAS-Commander is ready for AI-Assisted editing to support your bespoke applications. # RAS-Commander Parallelizing HEC-RAS In a Jupyter Notebook ### **HMS-Commander** #### **Al-Coded Jupyter Notebook Supporting** - Subbasin Parameter Editing - DSS Output File Renaming - Impervious Grid Scaling > 1.0 - Calibration Regions by shapefile - CSV File Input - Enables Linked HMS>RAS Calibration Workflows - Modular Script Ready for Al-Editing for Bespoke Applications | user_run_
number_
from_csv | initial_
deficit_scale | maximum_
deficit_scale | percolation_
rate_scale | impervious_
area_scale | recession_
factor | initial_flow_
area_ratio | threshold_
flow_to_
peak_ratio | time_of_
concentration
scale | storage
coefficient_
scale | |----------------------------------|---------------------------|---------------------------|----------------------------|---------------------------|----------------------|-----------------------------|--------------------------------------|-------------------------------------|-----------------------------------| | 1 | 1.0 | 1 | 0.06 | 1 | 0.1 | 1 | 0.1 | 1 | 1 | | 2 | 0.9 | 1 | 0.06 | 1 | 0.1 | 1 | 0.1 | 1 | 1 | ## Where's the AI? A few clarifications on how we are using AI: - Al is not operating the model - Al isn't making decisions or optimizing anything directly #### Here is the secret sauce: - 1. All was used to write python code into notebooks, starting from plain language descriptions. - 2. Al was also used to explain code segments it had written, to better teach me how to direct it with English commands to create the desired code output and functionality - 3. As someone with very little prior python experience, I was able to generate useful code and innovative workflows that immediately unlocked innovations that were previously unreachable. The most powerful capability of Large Language Model is the ability to speak multiple languages fluently. Especially deterministic languages like code. ## Why Parallelize: The Bitter Lesson by Richard Sutton emphasized: Modeling Breakthrough progress eventually arrives by an opposing approach based on scaling computation by search and learning By enabling parallel operation in support of wide parameter search operations, RAS-Commander represents an opposing approach for calibration workflows, based on efficiently scaling computation by search rather than relying on heuristic methods. ## Benchmarking HEC-RAS Core Scaling **Cloud Systems** **Midrange Workstations** **Midrange Laptops** **Local HPC Systems** Benchmarking was collected for all major CPU platforms (circa 2023) to explore core scaling behavior and identify chipsets and platforms offering best overall performance ## 2D HEC-RAS Performance Scaling Fenstermaker Local Compute Cluster: Benchmarking Insights 1 Unit Runtime = 1 Day To simplify comparisons Best Value = 0.31 @ 8 cores Scaling is linear with clock speed, but efficiency drops significantly beyond 2 cores ## Midrange Desktop vs Public Cloud - Midrange desktops (i9) outperform typical public cloud platforms on Windows - Massively inefficient core scaling on the cloud - Optimizing efficiency can help manage cloud costs Costs are still higher in the cloud Azure FSV2 ## Comparison: Local Compute vs Best Public Cloud #### <u>Chipset/Generation:</u> Intel Alder Lake Server-class architectures do not have "performance" and "efficiency" cores and can scale up to 16 cores on AWS C6i. Larger instances hurt performance. Cloud-scale architectures do successfully scale beyond 8 cores, but have similar efficiency characteristics Cloud instances are relatively cheap, but utilizing it effectively is needlessly complex. Local ## Optimize CPU Settings Disable Hyperthreading Disable "Efficiency" cores Install Intel XTU Tuning Take the free 10% ## Composite Benchmarking Results All Results are Recorded on the HEC-Commander GitHub Repo - Benchmarking results as CSV - Markdown files containing datasets and plots - Includes AI-generated python code Source Blog Post: Benchmarking is All You Need Drag-Drop this file into your favorite LLM, tell it your CPU and ask it for upgrade options ## Parallelization In Practice Giving 70% to Gain 70% For an assumed 1 day runtime at 1 core 2 Cores = 0.55 days 8 cores = 0.31 days Without parallelization, running at 2 cores is around 77% slower With Parallelization utilizing all 8 cores 3 run batches @ 2 cores = 0.55 Days 3 runs at 8 cores = 0.93 days With parallelization, batched runs sets are 72% faster w/same CPU by maximizing efficiency ### But How Do We Parallelize #### **HECRASController** - Lack of Documentation - Limited to COM32 Interface - No RASMapper Automation - No Parallel Execution #### **Market Solutions** - All Built on Linux/Cloud - No access to latest versions - Proprietary - Not Free - Data Transfer Bottlenecks A Better Solution was Needed So I coded it myself with AI ## Case Study: West Fork Calcasieu Model Louisiana Watershed Initiative Al Authored Scripts gave us an over 10x boost in effective throughput: A focus on hardware selection and effective utilization of idle compute capacity for low-cost horizontal scaling yielded very good results throughout Region 4's efforts ### Case Study: West Fork Calcasieu Model Region 4, Louisiana Watershed Initiative Leveraging and order of magnitude more compute and data allowed innovative calibration and validation approaches with more deterministic results. #### Revisiting The Bitter Lesson: "Breakthrough progress eventually arrives by an opposing approach based on scaling computation by search and learning" #### R.H. Sutton The future is parallelization! You can implement your own innovative tools today with lower barriers to entry than ever before by leveraging LLM's. ## Stacking Gains #### **From** to #### **Avoiding Public Cloud: 35% to 240% gains** - Depending on instance, provider - Linux instances consistently performed ~15% faster than Windows #### **Maximizing Single Core Performance for Model Development** - Disabling Hyperthreading: +10% - Disabling Efficiency Cores: Avoiding 5-25% Performance Penalty #### Maximizing Efficiency w/Batched Calibration/Validation, Parallelization - Compute batches 70% faster on single machine - Additional Linear Scaling through Remote Execution (+100% Per Machine) - Roughness: ~50 runs, HMS Sensitivity/Calibration 96 Runs per set - Tested with 12 total compute nodes, 48 parallel runs We will come back to this again in the Case Study at the end of the presentation. ### Back to AI: #### What does the Future Look Like? - Innovative new tools developed even closer to the technical experts - Drastically lowered barriers to writing and executing code - More automated data analysis methods - Less technical drudgery - More focus on higher-level planning and thinking - Ability to quickly innovate around commercial software limitations ## Al-Assisted Python Scripting: 3 Basic Levels of Al Interaction with Python Code: Each level of interaction drastically shortens the learning curve into the next. ChatGPT's Code Interpreter is a wrapper for a Jupyter server with a sandboxed Python Environment. This generates a plethora of training data, making Python the most efficient language that GPT is most proficient at utilizing. By observing the python code generated in code interpreter, the user becomes familiar with the libraries and methods utilized by code interpreter, and becomes better able to direct the AI to create the desired output. ## Al-Assisted Python Scripting: Lowering Barriers to Increase Adoption #### Al can assist beginner users with: - Utilizing code autonomously with Code Interpreter - Explaining Code Segments - Step by step instructions on Development Environment Setup - Assembling bespoke workflows from natural language - Utilizing a vast array of open source python packages This drastically lowers barriers to adoption and utilization python code, and opens a new frontier of development of innovative software tools. ## Prompting Examples and Strategies Let's explore what you can do at the first level of interaction: #### You are Here - Intelligent Voice Notes and Dictations - Office Application Assistant "Help me with VBA Scripting in Excel" - Expert Software Assistants "Write a QGIS script to do this" - Powerful Agentic Calculations "Fit a log-normal distribution to the data and calculate return periods" #### Code Interpreter can handle: - Basic GIS Operations - Sort/Filter/Display Datasets. - Create Charts and Graphs - Assemble simple code operations to solve problems Excel can't solve. - Input/Output files up to ~1GB ## Prompt Improvement Pipeline As tasks are repeated, a prompt improvement pipeline approach can be adopted Each task is an opportunity to improve the prompt and add or remove parameters. Automating small tasks, then larger tasks, and eventually outgrowing the capabilities of the web interface is the point. ## "Prompt Engineering" The most impactful tips and tricks for improving your prompts generally revolve around providing the AI custom instructions and context: #### When prompting an LLM, focus on: - Providing clear, well-structured directions - Use Delineators to Separate Instructions from Context - Understand the Limitations: - Limited Context Windows - Limited Retrieval from Large Documents - Probabilistic Operation, not Deterministic - File size and library limitations in Code Interpreter - No internet access (blame the AI safety patrol) Be ready to Iterate, Iterate! #### **Basic "prompt engineering" is typically:** - Role (Persona) - Constraints - Contextual Data - Instructions - Desired Output - Examples Prompts can also be structured as code Your AI Assistant doesn't know what it's doing here, unless you tell it ## Al-Assisted Python Scripting: Notebook Based, Code-Forward Approach GPT can just as easily write a script for you to execute locally. Since the backend for Code interpreter is a Jupyter Notebook, the format suddenly became very useful for small to medium complexity scripts due to the ability to have robust AI assistance. ``` python # Define the batch calculation function def calculate_normal_depths(Qs, Bs, Ss, ns, zs): depths = [] for Q, B, S, n, z in zip(Qs, Bs, Ss, ns, zs): def equations(y): A = (B + z * y) * y # Cross-sectional area P = B + 2 * y * np.sqrt(1 + z**2) # Wetted perimeter R = A / P # Hydraulic radius Q_calculated = (1.49 / n) * A * R**(2/3) * np.sqrt(S) # Manning's equation return Q_calculated - Q # Initial guess for y y_initial = 5 # Solve for y y_solution, = fsolve(equations, y_initial) depths.append(y_solution) return depths ``` ``` # Define the test lists of parameters Qs = [1000, 1500, 1000, 1000, 1000] Bs = [30, 30, 40, 30, 30, 30] Ss = [0.01, 0.01, 0.01, 0.005, 0.01, 0.01] ns = [0.035, 0.035, 0.035, 0.035, 0.045, 0.035] zs = [4, 4, 4, 4, 4, 2] # Run the function with the test data calculated_depths = calculate_normal_depths(Qs, Bs, Ss, ns, zs) calculated_depths Result [3.111072274811469, 3.865011366375395, 2.717481783543176, 3.746240317477036, 3.5610063560901644, 3.306401745450426] ``` By starting with small, useful operations that execute flawlessly within the code interpreter environment, non-coding users can begin chaining simple functionalities together within a local notebook, then iterating with GPT to achieve their workflow automation. ## Al-Assisted Python Scripting: Context Window Driven Modularity Context window driven modularity emerges, as code cells are naturally limited to the size of the context window before manual curation of context is required for each code request. Ideally, code cells should be around ½ the size of a typical LLM context window. For ChatGPT, this is somewhere around 30-62k tokens currently (depending on subscription level). Hiding code away in libraries is ideal for software development but introduces friction for beginner users, as this context must be manually included to create coherent code. Code can then be later combined and refactored for efficiency, standardization or to prepare it to be modularized further into a library or class. For non-coders who are relying on LLM's to do the heavy lifting of their coding effort, including **all** custom code within the notebook where possible is ideal. Open-source libraries should already be in the LLM's training, which maximizes coverage and prevents hallucinations. ## Al-Assisted Python Scripting: Automated Python Environment Setup Python environment setup is the #1 friction point in trying to create portable scripts Utilizing Jupyter's ability to run commands in the terminal, we can detect missing packages and install them using any combination of package managers (pip, conda, git). This is ideal when building for a single platform (typically Windows). The user provides import statements, and the GPT provides: - Import detection - Automatic package installation - User can specify conda, pip, or special instructions #### Output: Complete, ready-to-run code cell to automate environment setup Jupyter Notebook Portability Enhancer GPT (ChatGPT) ## Have Reasonable Expectations At even a 88% accuracy rate, chained operations will still exhibit high probability of errors and hallucinations. The "regenerate" button is still your friend! **Iterating is an integral part of using LLM's**. ## But Wait There's More ## **HEC-Commander Repository** #### **Open Source Notebooks:** HEC-Commander Repository (GitHub) #### **Blogs** #### **ChatGPT Examples and GPT's** #### Miscellaneous H&H Tools related to LWI Region 4 Efforts